
Method Handle Graph JIT Compilation

Motivation
A Method Handle Graph (MHG) is a graph structure that transforms a
method invocation at a dynamic call site to a number of target method
invocations. Although an MHG, together with the JVM instruction,
invokedynamic, resolves ‘pain points’ (e.g., polluted profiles and failed
inlining) when implementing dynamic JVM language implementations, it:

1) introduces a cost of graph traversal to resolve target methods when a
dynamic invocation is made; and

2) adds more overhead to Just-In-Time (JIT) compile a graph into native
code due to a number of homogeneous method handle nodes in the
MHG.

Solution
MHG JIT is a dynamic compilation that converts an MHG into another
equivalent optimized bytecode version. We use inlining to concatenate
multiple method handles of a graph into a single bytecode method.

Example for N0->N3 in the FilterArgument MHG

Shijie Xu, David Bremner
University of New Brunswick, IBM Canada

Faculty of Computer Science

{Sxu3, bremner}@unb.ca

Background
An example of FilterArgument method handle is:

MethodHandle []filters;
MethodHandle next;
T filterArguments (A a , B b) {

return (T) next.invokeExact (
(T1) filters[0].invokeExact(a) ,
(T2) filters[1].invokeExact(b)) ;

}

The corresponding MHG is:

aload 0

getField filters[0] //For simplification

aload 1

invokevirtual MH:invokExact(A)T1

astore 3

…

aload 0

getField filters[0]

aload 1

{

astore 3; astore 4;

//bytecodes of N3’s target here and re-number variables

ldc 6acdcb0c-705b-4426

Invokestatic ConstCache.peek:(String;)Object

Checkcast T1

….

}

astore 5

…

